
Click Cheng, NVIDIA Solution Architect

GTC China 2020

IMPROVE GPU UTILIZATION FROM
SYSTEM LEVEL

2

WHAT’S ABOUT THE TALK
Welcome

It’s

From system level of NVIDIA perspective, proposed several ways to improve GPU utilization;

Discuss several GPU monitoring metrics which reflect real GPU utilization;

Intro each solution mechanism, usage, discuss the benefit in some test cases;

Summary different solution positioning, comparison, etc;

It’s Not

Improve GPU utilization from scheduler level;

Optimize GPU utilization from coding level;

3

Overview

What’s About The Talk

GPU Utilization Discussion

Multi-Process Service
MPS Intro, Usage, Test Cases

Multi-Instance GPU
MIG Intro, Usage, Test Cases

Triton and vGPU Brief
Intro, Test Cases

Quick Summary

OUTLINE

4

OVERVIEW

5

BACKGROUND
Why Is This Important

GPU is more and more powerful, and more precious.

Many applications are benefiting more from more powerful GPU.

While for some lower-utilized application, still can’t fully utilize GPU

powerful computing capability.

Example, some developing scenario, inference scenario.

Especially for some inference cases with critical latency limitation,

which not allowed batching for inference.

How to share and isolate among processes or users on one GPU?

6

GPU UTILIZATION
Metrics and Tools

GPU utilization: reflect how busy different resources on GPU are, metrics including GPU

core(CUDA core, integer, FP32, Tensor Core), frame buffer(capacity, bandwidth), PCIe RX

and TX, NVLink RX and TX, encoder and decoder, etc.

Generally, when we talk about GPU utilization, we are mostly talking about GPU utilization

of CUDA core.

GPU utilization reflects an impact on delivered application performance somehow, but not

necessarily.

Monitor tools

nvidia-smi or NVML, installed with GPU driver;

DCGM: Data Center GPU Manager, standalone package, using NVML and advanced data

center profiling metrics;

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/dcgm

7

GPU UTILIZATION METRIC
From nvidia-smi or NVML

“GPU Utilization” from nvidia-smi or NVML is a rough metric that reflects how busy GPU cores

are utilized.

Defined by “Percent of time over the past sample period during which one or more kernels was

executing on the GPU”, from NVML API Guide.

Extreme case, the metric is 100% even there’s only one thread launched to run kernel on GPU

during past sample period.

https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilization__t.html#structnvmlUtilization__t

8

GPU UTILIZATION METRIC
From DCGM

DCGM provides CLI dcgmi and API for C and Python

language.

DCGM DCP(Data Center Profiling) provides lower level

profiling metrics, which lists several utilization metrics in

more accurate.

From these metrics, better reflect how well GPU resources

are utilized to some extent.

Well, one GPU has many different resources(computing,

memory, IO), it’s highly recommended to capture several

metrics to understand GPU utilization, not just one or two.

9

GPU UTILIZATION METRIC
DCGM DCP Metrics

Metric Definition DCGM Field ID

Graphics Engine

Activity

Ratio of time the graphics engine is active. The graphics engine is active

if a graphics/compute context is bound and the graphics pipe or

compute pipe is busy.

DCGM_FI_PROF_GR_ENGINE_ACTIVE

SM Activity
The ratio of cycles an SM has at least 1 warp assigned (computed from

the number of cycles and elapsed cycles)
DCGM_FI_PROF_SM_ACTIVE

SM Occupancy

The ratio of number of warps resident on an SM. (number of resident as

a percentage of the theoretical maximum number of warps per elapsed

cycle)

DCGM_FI_PROF_SM_OCCUPANCY

Tensor

Utilization

The ratio of cycles the tensor (HMMA) pipe is active (off the peak

sustained elapsed cycles)
DCGM_FI_PROF_PIPE_TENSOR_ACTIVE

Memory BW

Utilization

The ratio of cycles the device memory interface is active sending or

receiving data.
DCGM_FI_PROF_DRAM_ACTIVE

FLOP Counts Ratio of cycles the fp64 /fp32 / fp16 / HMMA|IMMA pipes are active. DCGM_FI_PROF_PIPE_FPXY_ACTIVE

NVLink

Utilization

The number of bytes of active NVLink rx or tx data including both

header and payload.
DCGM_FI_DEV_NVLINK_BANDWIDTH_L0

PCIe Utilization
pci__bytes_{rx, tx} - The number of bytes of active pcie rx or tx data

including both header and payload.
DCGM_FI_PROF_PCIE_[T|R]X_BYTES

10

GPU UTILIZATION METRIC
Using dcgmi

Recommended monitor command with dcgmi

$ dcgmi dmon -e 1001,1002,1004,1005,1009,1010,1011,1012,150,155,110,111

11

MULTI-PROCESS SERVICE

12

HYPER QUEUE
Behind MPS

Hyper-Q is introduced since Kepler GPU.

To enable multiple CPU threads or processes to launch work on a single

GPU simultaneously.

Supported connection types:

Multiple CUDA streams;

Multiple CPU threads;

Multiple CPU processes;

Hyper-Q whitepaper:
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf

https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf

13

HYPER QUEUE
Example: $CUDA_PATH/samples/6_Advanced/simpleHyperQ

for (int i = 0 ; i < nstreams ; ++i)

{

kernel_A<<<1,1,0,streams[i]>>>(&d_a[2*i], time_clocks);

total_clocks += time_clocks;

kernel_B<<<1,1,0,streams[i]>>>(&d_a[2*i+1], time_clocks);

total_clocks += time_clocks;

}

Device without Hyper-Q Device with Hyper-Q

14

MULTI-PROCESS SERVICE
What’s MPS

An alternative, binary-compatible implementation of the CUDA Application Programming

Interface (API).

Based on GPU Hyper-Q capability

• Enabling multiple CPU processes sharing one GPU context;

• Allowing kernels and memcpy in different processes can be executed simultaneously on the same GPU, to utilize

GPU better;

MPS includes

• Control Daemon Process – The control daemon is responsible for starting and stopping the server, as well as

coordinating connections between clients and servers.

• Server Process – The server is the clients' shared connection to the GPU and provides concurrency between clients.

• Client Runtime – The MPS client runtime is built into the CUDA Driver library and may be used transparently by any

CUDA application.

15

MULTI-PROCESS SERVICE
Without MPS VS With MPS

Without MPS With MPS

16

MULTI-PROCESS SERVICE
MPS Architecture

System-wide provisioning with multiple users.

Client A from User 1 request;

Daemon create MPS server for User 1 and Client A

runs;

Client B from User 1 request and assigned to MPS

server, and to run;

Client C from User 2 request, and pending;

Util all clients from User 1 running end and MPS

server exit for User 1, Daemon create MPS server

for User 2, and Client C begin to run;

17

MULTI-PROCESS SERVICE
MPS Benefits

GPU Utilization

A single process may not utilize all the compute and memory-bandwidth capacity available on

the GPU. MPS allows kernel and memcopy operations from different processes to overlap on

the GPU, achieving higher utilization and shorter running times.

Reduced on-GPU Context Storage

The MPS server allocates one copy of GPU storage and scheduling resources shared by all its

clients, thus reduces the resource storage.

Reduced on-GPU Context Switching

The MPS server shares one set of scheduling resources between all of its clients, eliminating

the overhead of swapping when the GPU is scheduling between those clients.

18

MULTI-PROCESS SERVICE
Potential Applications for MPS

Application process does not generate enough work to saturate the GPU. Applications like this

are identified by having a small number of blocks-per-grid.

Application shows a low GPU occupancy because of a small number of threads-per-grid.

In strong-scaling case, some MPI processes may underutilize the available compute capacity.

Especially for AI inference, with critical latency limitation, which not allowed batching for

inference.

19

MULTI-PROCESS SERVICE
Volta MPS

Volta MPS provides a few key improvements, compared with pre-Volta:
• Volta MPS clients submit work directly to the GPU without passing through the MPS server.

• Each Volta MPS client owns its own GPU address space instead of sharing GPU address space with all other

MPS clients.

• Volta MPS supports limited execution resource provisioning for Quality of Service (QoS).

20

MULTI-PROCESS SERVICE
MPS Usage

Start MPS daemon process

nvidia-cuda-mps-control –d

Check MPS process

ps -ef | grep mps

Recommend to set compute mode to exclusive

sudo nvidia-smi -c EXCLUSIVE_PROCESS

Quit MPS daemon

echo quit | nvidia-cuda-mps-control

21

MULTI-PROCESS SERVICE
MPS Usage

nvidia-smi shows when running eight trtexec processes with MPS:

22

MPS TEST CASE 1
Simple Kernel with One Thread Running

Simple kernel code: (Ignore the computing content)

To test: run four processes with and without MPS

To profile: profiling analysis the running characteristic

__global__ void testMaxFlopsKernel(float * pData, int nRepeats, float v1, float v2)

{

int tid = blockIdx.x* blockDim.x+ threadIdx.x;

float s = pData[tid], s2 = 10.0f - s, s3 = 9.0f - s, s4 = 9.0f - s2;

for(int i = 0; i < nRepeats; i++)

{

s=v1-s*v2;

}

pData[tid] = ((s+s2)+(s3+s4));

}

23

MPS TEST CASE 1
Test Results

Run multiple processes with mpirun, command like: mpirun –np $NP ./testMPS

Without MPS, the kernel running time increases linearly along with the number of

processes.

With MPS, the kernel run time of multi processes is almost the same as one process.

This is the extreme case, but it’s the best case to show MPS benefit.

Category Average Wall Clock Time

1 Process 2 Processes 4 Processes

MPS OFF 2924 ms 6013 ms 12002 ms

MPS ON 2924 ms 2924 ms 2924 ms

24

MPS TEST CASE 1
Profiling Analysis

Use nvprof to capture trace:

Then import into NVVP profiler tool for visual profiling analysis.

node1:~$ nvprof -o ./profile-test2-%p --profile-child-processes mpirun -np 2 ./testMPS

==56763== NVPROF is profiling process 56763, command: ./testMPS

==56768== NVPROF is profiling process 56768, command: ./testMPS

…

Rank0: BlockSize(1, 1, 1), GirdSize(1, 1, 1)

Rank0: Iteration: 1, Total Elapsed Time: 2918.924ms, Single kernel cost time: 2918.924ms

Rank0: Performance: 0.685GFLOPS

Rank1: BlockSize(1, 1, 1), GirdSize(1, 1, 1)

Rank1: Iteration: 1, Total Elapsed Time: 2917.827ms, Single kernel cost time: 2917.827ms

Rank1: Performance: 0.685GFLOPS

…

==56768== Generated result file: /home/dgx/src/testMPS/profile-test2-56768

…

==56763== Generated result file: /home/dgx/src/testMPS/profile-test2-56763

https://developer.nvidia.com/nvidia-visual-profiler

25

MPS TEST CASE 1
Profiling Analysis: Without MPS

Without MPS, four processes.

Four CUDA contexts on a V100 GPU.

Although it seems like that they are

running concurrently, the execution

time for each kernel is lengthened.

That is because that they are

running under the GPU time slice

rotation scheduling mechanism.

These CUDA contexts need to be

switched in each time slice which

introduces extra time overhead.

26

MPS TEST CASE 1
Profiling Analysis: With MPS

With MPS, four processes.

Only one CUDA context to run

these four processes.

The kernels from different

processes are really running

overlapped.

27

MPS TEST CASE 2
ResNet-50 Inference in 7ms Budget

This example is to run ResNet-50 inference with TensorRT engine.

We use NGC container “nvcr.io/nvidia/tensorrt:19.07-py3” on SXM2 V100 16GB.

We run and compare several scenarios in 7ms inference time budget:

• Batching in single process;

• No batching(batch size is 1) in multiple processes, without MPS;

• No batching(batch size is 1) in multiple processes, with MPS;

• Batching and multiple processes combination;

At the same time, we capture some utilization metrics with dcgmi, to quantify GPU usage.

dcgmi dmon -e 1001,1002,1004,1005,1009,1010,1011,1012

https://ngc.nvidia.com/

28

MPS TEST CASE 2
Steps to Test

Start container

nvidia-docker run -it --name click-trt --privileged -v /home/click/models/:/click nvcr.io/nvidia/tensorrt:19.07-py3 bash

Build out ResNet-50 TRT engine (using caffemodel here)

Example, for batch size 1, 32, …

trtexec --batch=1 --iterations=100 --workspace=1024 --deploy=/click/ResNet-50-deploy.prototxt --model=/click/ResNet-50-model.caffemodel --output=prob --

fp16 --saveEngine=/workspace/rn50-bs1.engine

trtexec --batch=32 --iterations=100 --workspace=1024 --deploy=/click/ResNet-50-deploy.prototxt --model=/click/ResNet-50-model.caffemodel --output=prob -

-fp16 --saveEngine=/workspace/rn50-bs32.engine

Test in single process

trtexec --loadEngine=/workspace/rn50-bs1.engine --iterations=1000 --workspace=1024 --fp16

trtexec --loadEngine=/workspace/rn50-bs32.engine --iterations=10000 --workspace=1024 --fp16 --batch=32

Test in multi processes with MPI

mpirun -np 8 --allow-run-as-root trtexec --loadEngine=/workspace/rn50-bs1.engine --iterations=1000 --workspace=1024 --fp16 > trt-mps-mpi-8.log

29

MPS TEST CASE 2
Test Results

Batching is the recommended way to

reach best throughput.

Without batching, i.e. BS=1 cases,

MPS can bring ~3X throughput.

Batching and MPS can be combined,

to improve throughput to some

extent.

579

1617

5970

6857

0

1000

2000

3000

4000

5000

6000

7000

8000

ResNet-50 Inference Throughput in 7ms
Latency(Images/s)

BS=1, NP=4, MPS OFF BS=1, NP=11, MPS ON

BS=8, NP=5, MPS ON BS=48, NP=1, MPS OFF

30

MPS TEST CASE 2
GPU Utilization Metrics – MPS OFF

0.88

0.331

0.035 0.042

1

0.333

0.039 0.043

1

0.343

0.039 0.046

1

0.343

0.038 0.045

1

0.352

0.038 0.046

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GPU Util SM Activity Tensor Util SM Occupancy

GPU Utilization Metrics - Without Batching, Without MPS

NP=1 NP=2 NP=4 NP=8 NP=16

31

MPS TEST CASE 2
GPU Utilization Metrics – MPS ON

0.88

0.331

0.035 0.042

0.96

0.547

0.059
0.081

1

0.681

0.076

0.127

1

0.842

0.098

0.197

1

0.925

0.112

0.234

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GPU Util SM Activity Tensor Util SM Occupancy

GPU Utilization Metrics - Without Batching, With MPS

NP=1 NP=2 NP=4 NP=8 NP=12

32

MPS TEST CASE 2
Profiling Analysis

BS=1, NP=8, MPS OFF BS=1, NP=8, MPS ON

33

MPS TEST CASE 3
JPEG Resize

JPEG to JPEG resizing is an essential workload for many internet services, including training

and inference for image classification, object detection, etc.

And for some service provider, to cut storage expense, they might just storage one image

instead of several dozens in different resolutions.

Fastvideo , an NVIDIA Preferred Partner, developed an image processing SDK with CUDA

acceleration (one of their customer was Flickr), since there’re multi phases in the whole JPEG

resize implementation pipeline, like copy from storage to CPU memory, then copy to GPU

memory, JPEG decoding, resizing, sharp, JPEG encoding, copy to CPU memory, etc. They’ve

done many optimizations across the whole pipeline, and one technical they adopted is NVIDIA

MPS, to optimize the throughput of the GPU system.

We use Fastvideo SDK to perform this testing.

https://www.fastcompression.com/

34

MPS TEST CASE 3
Test Results

Resize JPEG from 1920x1080 to 480x270.

Up to 3.5x throughput improvement when MPS enabled.

Processes Number FPS – MPS OFF FPS – MPS ON Speedup

2 1152 1633 1.42

4 1025 2319 2.26

6 1016 2786 2.74

8 1014 3024 2.98

10 1011 3190 3.15

12 1014 3301 3.25

14 1154 3367 2.92

16 1012 3458 3.42

18 1009 3558 3.53

35

MPS TEST CASE 3
Test Results

Resize JPEG from 1280x720 to 320x180.

Up to 4.4x throughput improvement when MPS enabled.

Processes Number FPS – MPS OFF FPS – MPS ON Speedup

2 937 2007 2.14

4 904 2910 3.22

6 897 3451 3.85

8 894 3813 4.26

10 890 3848 4.32

12 891 3878 4.35

14 900 3860 4.29

16 889 3921 4.41

18 886 3942 4.45

36

MULTI-INSTANCE GPU

37

GPU ARCHITECTURE AND CUDA

2016

PASCAL

HBM, NVLINK, FP16

2017

VOLTA

HBM, NVLINK, TENSOR
CORES, MPS

2018

TURING

TENSOR CORES, RT
CORES

2020

AMPERE

HBM, NVLINK, TENSOR
CORES, PARTITIONING

CUDA 8.0 CUDA 9.0 CUDA 10.0 CUDA 11.0

38

A100 GPU
Highest Performance, Efficiency and Utilization

New Technology Benefit over Volta

Faster Tensor Core for AI,

support FP16 & bfloat16

>2x V100 RN50 & Transformer train

~3x Tensor Core FLOPS

Dramatically reduce time-to-soln.

New Tensor Core for HPC
2.5x FP64 FLOPS

Accelerate core HPC kernels

Wider + Faster Memory

1.7x memory bandwidth

Up to 40GB per GPU

Larger model & dataset

New NVLINK3 + PCIe Gen4
2x NVLINK bandwidth

2x PCIe bandwidth + SR-IOV

New Multi-Instance GPU,

with Fault and Perf

Isolation

Up to 7 concurrent GPUs

Higher utilization

Substantially lower entry cost

New Hardware Engines
JPEG HW decoder, 5 video NVDEC

Optical flow accelerator

A100

GPU Core

PCIe G4 x1612 NVLINK3 x4

High Bandwidth

Memory

High Bandwidth

Memory

H
ig

h
 B

a
n

d
w

id
th

M
e
m

o
ry

H
ig

h
 B

a
n

d
w

id
th

M
e
m

o
ry

H
ig

h
 B

a
n

d
w

id
th

M
e
m

o
ry

H
ig

h
 B

a
n

d
w

id
th

M
e

m
o

ry

39

NEW MULTI-INSTANCE GPU (MIG)
Optimize GPU Utilization, Expand Access to More Users with Guaranteed Quality of Service

Up To 7 GPU Instances In a Single A100: Dedicated
SM, Memory, L2 cache, Bandwidth for hardware QoS
& isolation

Simultaneous Workload Execution With Guaranteed
Quality Of Service: All MIG instances run in parallel
with predictable throughput & latency

Right Sized GPU Allocation: Different sized MIG
instances based on target workloads

Flexibility: to run any type of workload on a MIG
instance

Diverse Deployment Environments: Supported with
Bare metal, Docker, Kubernetes, Virtualized Env.

Amber

GPU Mem

GPU

GPU Mem

GPU

GPU Mem

GPU

GPU Mem

GPU

GPU Mem

GPU

GPU Mem

GPU

GPU Mem

GPU

40

MIG ISOLATION

Computational Isolation

• SM are not shared between MIGs

• This provides high QoS for each MIG users

DRAM Bandwidth Isolation

• Slices of the L2 cache are physically associated with particular DRAM channels and memory

• Isolating MIGs to non-overlapping sets of L2 cache slices does two things:

• Isolates BW

• Allocates DRAM memory between the MIGs

Configuration Isolation

• Creating GPU Instances or Compute Instances do not disturb work running on existing instances

Error Isolation

• Resources within the chip are separately resettable

41

GPU INSTANCE PROFILES

GPU

Instance

Number of

Instances

Available

SMs Memory NVDECs

Target use-cases

Training Inference

1g.5gb 7 14 5 GB 0
BERT Fine-tuning (e.g. SQuAD),

Multiple chatbots, Jupyter notebooks

Multiple inference (e.g. TRITON);

ResNet-50, BERT, WnD networks
2g.10gb 3 28 10 GB 1

3g.20gb 2 42 20 GB 2

Training on ResNet-50, BERT, WnD

networks
4g.20gb 1 56 20 GB 2

7g.40gb 1 98 40 GB 5

For A100-SXM4-40GB

• 18 possible configurations

• NVML or NVIDIA-SMI to
create and retire Instance

• Config. can be dynamically
updated when the GPU slices
involved are idle

Slice #1 Slice #2 Slice #3 Slice #4 Slice #5 Slice #6 Slice #7

7

4 2 1

4 1 1 1

2 2 3

2 1 1 3

1 1 2 3

1 1 1 1 3

3 3

3 2 1

3 1 1 1

2 2 2 1

2 2 1 1 1

1 1 2 2 1

1 1 2 1 1 1

2 1 1 2 1

2 1 1 1 1 1

1 1 1 1 2 1

1 1 1 1 1 1 1

FLEXIBLE MIG CONFIGURATIONS FOR DIFFERENT SCENARIOS

43

EXAMPLE: TWO LEVEL PARTITIONING
GPU Instances and Compute Instances

44

ENABLEMENT ACROSS SOFTWARE STACK

CUDA DRIVER

DCGM
NVML/

nvidia-smi

A100 TESLA GPUs
& SYSTEMS

TESLA GPU NVIDIA HGXNVIDIA DGX FAMILY

SYSTEM SOFTWARE

D
E

P
L
O

Y
M

E
N

T

MANAGEMENT
& MONITORING

CONTAINERS &
ORCHESTRATION

BARE-METAL
PASSTHROUGH
vGPU

► Support for bare-metal and containerized environments

► Interaction directly via NVML/nvidia-smi

► Kubernetes (device enumeration, resource type), Slurm

► Docker CLI

► Monitoring and management (including device metrics association to MIG)

45

GPU reset required to enable/disable MIG mode (one-
time operation)

Use NVML/nvidia-smi (even through containers) to
manage MIG

Example: Create new instance with nvidia-smi

USER WORKFLOW: MIG MANAGEMENT
List/Create/Update/Destroy Instances via NVML and nvidia-smi

nvidia-smi mig --list-gpu-instances
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 1g.5gb 19 9 2:1 |
+--+
| 0 1g.5gb 19 10 3:1 |
+--+
| 0 1g.5gb 19 13 6:1 |
+--+
| 0 2g.10gb 14 3 0:2 |
+--+
| 0 2g.10gb 14 5 4:2 |
+--+

46

MIG: RUNNING DOCKER CONTAINERS
User Workflow

● Run GPU containers with MIG using “-
-gpus” option in Docker 19.03

○ Primarily for single node
development and testing

● Enabled via NVIDIA Container Toolkit
(previously known as nvidia-docker2)

● Users configure MIG partitions using
NVML/nvidia-smi

● Launching the container requires
specifying the GPU instances to
expose to the container

$ docker run \
--gpus '"device=0:0,0:1"' \
nvidia/cuda:11.0-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-2ceff3df-31b3-caf2-eace-a494b4b7926b)
MIG 3g.20gb Device 0: (UUID: MIG-GPU-2ceff3df-31b3-caf2-eace-

a494b4b7926b/1/0)
MIG 3g.20gb Device 1: (UUID: MIG-GPU-2ceff3df-31b3-caf2-eace-

a494b4b7926b/2/0)

$ docker run \
--gpus '"device=MIG-GPU-2ceff3df-31b3-caf2-eace-a494b4b7926b/1/0"' \
nvidia/cuda:11.0-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-2ceff3df-31b3-caf2-eace-a494b4b7926b)
MIG 3g.20gb Device 0: (UUID: MIG-GPU-2ceff3df-31b3-caf2-eace-

a494b4b7926b/1/0)

47

● MIG configured on the node ahead of time

● Expected to be transparent to the end
user

● Simple exposure model for homogenous
nodes

● Other exposure options still in discussion
and not settled yet

● User jobs will be able to only execute on a
single Compute Instance

MIG: RUNNING CONTAINERS USING K8S
User Workflow

apiVersion: v1
kind: Pod
metadata:
name: gpu-example

spec:
containers:

- name: gpu-example
image: nvidia/cuda:11.0-base
resources:
limits:

nvidia.com/gpu: 1
nodeSelector:

nvidia.com/gpu.product: A100-SXM4-40GB-MIG-1g.5gb
nvidia.com/cuda.runtime: 11.0
nvidia.com/cuda.driver: 450.28.0

48

MIG TEST CASE 1 – BERT LARGE INFERENCE
Test Results

Perf among 7 MIG 1g.5gb slice is very stable

and consistent. MIG provides great perf

isolation and QoS.

2.1x throughput when MIG is enabled for this

case and config.

208

672

1457

0

200

400

600

800

1000

1200

1400

1600

Bert Large Inference, BS=1, INT8

MIG: 1*1g.5gb No MIG: Whole GPU MIG: 7*1g.5gb

49

MIG TEST CASE 1 - BERT LARGE INFERENCE
GPU Utilization Metrics

0.129

0.028
0.046

0.466

0.085

0.132

0.997

0.203

0.323

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SM Activity Tensor Util Memory Activity

GPU Device Level Utilization Metrics

MIG: 1*1g.5gb No MIG: Whole GPU MIG: 7*1g.5gb

50

MIG TEST CASE 2 – JASPER INFERENCE
Test Results

Throughput: amount of audio seconds

processed by GPU in one second

With MIG enabled, throughput up to 3.4x

improvement.

584

1160

4037

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Jasper inference, BS=1, FP16

MIG: 1*1g.5gb No MIG: Whole GPU MIG: 7*1g.5gb

51

TRITON AND VGPU BRIEF

52

INEFFICIENCY LIMITS INNOVATION
Difficulties with Deploying Data Center Inference

Single Framework OnlySingle Model Only Custom Development

Some systems are overused while

others are underutilized
Solutions can only support

models from one framework

Developers need to reinvent the

plumbing for every application

ASR NLP
Rec-

ommender

!

53

NVIDIA TRITON INFERENCE SERVER
Production Data Center Inference Server

Maximize real-time inference

performance of GPUs

Quickly deploy and manage multiple

models per GPU per node

Easily scale to heterogeneous GPUs

and multi GPU nodes

Integrates with orchestration

systems and auto scalers via latency

and health metrics

Now open source for thorough

customization and integration

T
ri
to

n

In
fe

re
n
c
e

S
e

rv
e

r

NVIDIA

T4

NVIDIA

T4

T
ri
to

n

In
fe

re
n

c
e

S
e
rv

e
r

Tesla

V100

Tesla

V100

T
ri
to

n

In
fe

re
n

c
e

S
e
rv

e
r Tesla P4

Tesla P4

54

DYNAMIC BATCHING

Triton Inference Server groups
inference requests based on
customer defined metrics for
optimal performance

Customer defines
1) batch size (required)
2) latency requirements (optional)

Example: No dynamic batching
(batch size 1 & 8) vs dynamic
batching

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

55

Server

Hypervisor

Virtual

PC

Virtual

Compute

Virtual

PC

Virtual

Compute

VGPU FOR GRAPHICS AND COMPUTING

Virtual

Workstation

NVIDIA

GPU

H.264 Encode

Virtual

Workstation

NVIDIA Quadro

Driver

NVIDIA Quadro

Driver

NVIDIA GRID vGPU manager

NVIDIA Graphics

Driver

NVIDIA Graphics

Driver

NVIDIA Compute

Driver

NVIDIA Compute

Driver

vGPU vGPUvGPU vGPU vGPU vGPU

CPUs
NVIDIA

GPU

H
a
rd

w
a
re

V
ir

tu
a
li
z
a
ti

o
n
 L

a
y
e
r

56

VGPU FOR COMPUTING
vCS

Hypervisor provides best security, isolation guarantee.

vCS provides a good option for cost sensitive customers and those new comers to GPU computing,
or application of low-utilized GPU scenarios.

Flexible scheduler strategy: Best effort, fixed-share, equal-share.

Flexible scheduler time slice (1-20 ms controllable).

Perf is guaranteed even that it’s time-round sharing for SM resources.

57

QUICK SUMMARY

58

CUDA CONCURRENCY MECHANISMS

Parallel

work

Address space

isolation

SM performance

isolation

Memory

performance

isolation

Error isolation

TRITON (CUDA Streams) Yes No No No No

MPS Yes Yes

Yes

(by percentage,

not partitioning)

No No

vGPU Yes
Yes (With

hypervisor)
Yes (Time-slicing) Yes Yes

MIG Yes Yes Yes Yes Yes

Triton, MPS, vGPU and MIG

59

COMPARISON
Part 1

Simple Comparison Among MPS, vGPU, TRITON, MIG

MPS vGPU TRITON MIG

Intro Link MPS Whitepaper Official Link Github MIG Whitepaper-NDA

Open Source No No Yes No

Free Yes No Yes Yes

Main Positioning

Improve GPU utilization for
applications that doesn’t fully
utilize GPU, by schedule
multi-process, with limited
execution resource.

Offer a consistent user
experience for every virtual
workflow and improve GPU
utilization in some scenario, by
split GPU into multiple vGPUs as
memory size equal partition, by
integrating with hypervisor
(virtual machine technology).

Provide a cloud
inferencing solution
optimized for NV GPU,
with an inference service
via HTTP or gRPC
endpoint.

Improve GPU utilization
and serve more users
with physical resource
isolation and QoS
guarantee.

Target Applications

Applications that doesn’t fully
utilize GPU: HPC-MPI
application, training,
inference with small matrix
size.

3D Rendering, vGaming,
training, inference.

Inference. Training, inference, HPC.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://github.com/NVIDIA/tensorrt-inference-server
http://pid/1046037

60

COMPARISON
Part 2

Simple Comparison Among MPS, vGPU, TRITON, MIG

MPS vGPU TRITON MIG

Supported GPU GPU since Kepler
P100, P40, P4, P6, V100, T4,

RTX8000, RTX6000, M10, M60
All GPU A100

Supported OS Linux Linux, Windows Linux Linux

Extra Software

Needed
No

Hypervisor(KVM, Citrix,

VMWare, etc)
No No

Benefits
Improve GPU utilization,

improve throughout

Improve GPU utilization via

time-sharing, improve user

experience

Improve GPU

utilization, improve

throughout

Improve GPU utilization,

improve throughput,

serve more users,

provide QoS and fault

isolation.

GPU Resource

Isolation

Context level isolation,

memory and SM sharing

GPU memory isolation, SM

sharing by rotation.

TRTIS executes

model(app) instance as

Thread(CPU)-

Stream(GPU). SM

sharing is via multi-

stream.

GPU memory isolation,
SM isolation, other
engines isolation(CEs,
NVDEC).

61

COMPARISON
Part 3

Simple Comparison Among MPS, vGPU, TRITON, MIG

MPS vGPU TRITON MIG

QoS No strong guarantee
Guarantee in time-slicing

sharing envelop
No strong guarantee

Strong, the best

guarantee

Ease of Use Easy Medium Easy Easy

Support Forum Professional team Github issue Professional team

Considerations/Limita

tions

No fault tolerance. Really

not suitable for arbitrary

combination of multi-user

applications, especially for

public cloud scenario with

full isolation requirements.

Not really sharing SM as this is

a time-sharing/slicing

implementation.

Mainly confined to

inference type

workloads. Multi-

streaming currently not

effective to TF based

models (limiting factor

from TensorFlow).

Only for compute

workloads in MIG mode,

don’t support P2P

between GPU compute

instances.

Correlations

MPS, vGPU, TRITON, MIG are not mutually exclusive solutions.
Example: you can run MPS or TRITON in vGPU environment.
Example: you can run MPS or vGPU in MIG-enabled A100 system.
Example: you can even run multi processes in TRITON with MPS enabled, under vGPU with MIG-enabled system.

